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This paper describes the induced pressure distribution, free-surface waves, vortical 
flow and wave drag of an exact solution of low-aspect-ratio flat-ship theory. An 
energy balance is derived which relates the spray drag, the energy carried away by 
the far-field waves and the vortical flow to the total wave drag. 

1. Introduction 
Flat-ship theory is based on the approximation that a given ship’s draught is small 

compared with its beam and length. Low-aspect-ratio flat-ship theory assumes the 
secondary approximation that the beam is small compared with its length and the 
Froude number (based on length) is large. Flat-ship theory can be thought of as the 
counterpart to Michell’s famous work on thin ships (beam 4 length and draught). 
While Michell’s theory leads to an explicit solution and has been studied in detail, 
flat-ship theory and low-aspect-ratio flat-ship theory lead to a mixed boundary-value 
problem which is significantly more difficult to solve. 

Maruo (1967) reformulated the problem in terms of an integral equation which 
must be solved for the unknown pressure distribution to obtain the given hull shape. 
His kernel is rather troublesome to’work with as it is both singular and highly 
oscillatory. The unknown pressure is also singular. Tuck (1975) provided some 
preliminary numerical solutions to the low-aspect-ratio limit of Maruo’s problem. 
However, because of the rather wild behaviour of the kernel, the relationship between 
the hull shape and the calculated flow quantities is not readily obvious. 

The purpose of this paper is to provide some insight into the low-aspect-ratio 
problem by presenting a simple analytic example worked out in some detail. 

2. Problem formulation 
The general problem of flat-ship theory begins with the equations describing 

inviscid, incompressible, irrotational steady flow past a ship. These equations 
represent the conservation of fluid mass, tangential flow along the ship, tangential 
flow along the free surface and Bernoulli’s equation for the conservation of energy. 
In  non-dimensional form (where all quantities have been scaled according to the 
length L and speed U of the ship relative to the undisturbed flow) these equations are 

I respectively + + QZZ = 0, 

@z = e@,f,+e@,f, on z = ef(x, y) for (x, y) on the ship, 
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+ ‘ + I  
FIGURE 1. Coordinate system of flow past a ship. 

In this notation, @ is the velocity potential, z = ef(x, y) describes the position of the 
ship’s hull, 5 is the free-surface elevation and P* is the pressure. P* is assumed to be 
zero on the free surface and P*(x, y, $(x, y)) is the pressure on the ship’s hull. The 
non-dimensional parameters are E ,  the ratio of the ship’s draught to its length, and 
F ,  the Froude number based on the length of the ship; F = U/(gL) i  where g is the 
acceleration due to gravity. Figure 1 describes the coordinate system used. As this 
reference frame is fixed with respect to the ship, there is a uniform flow heading 
towards the ship from upstream infinity. 

Flat-ship theory assumes that E 4 1 and that ( 1 )  can be linearized using the 
asymptotic expansions 

q x ,  y, 2 ; 6 )  = x+ q ( x ,  y, 2) + e$,(x, y, 2) + f .  9 , 

&, y ; 6 )  = E1;I(X, y) + S21;I&, y) + . . . , 
P*(x, y, E f ( X ,  y)) = P*(x, y, 0; 6) + . . . = E P ( Z ,  y) + . . . . 

Vzz+V?/y+Vtz  = 0, 

and 

The perturbation potential ip, surface elevation 1;1 and linearized surface pressure P, 
then satisfy 

\ 
vZ = fz(x, y) 

ipz = qZ(x ,  y) 

Pep, +1;1 = 0 

P + F2qz +f = 0 

on z = 0 for (x, y) on the ship, 

on z = 0 for (x, y) off the ship, 

on z = 0 for (x, y) off the ship, 

on z = 0 for (x, y) on the ship. 

Equations ( 2 )  are the general equations for flat-ship theory. While these equations 
are linear, they are difficult to solve since the boundary condition on the surface is 
prescribed in a mixed fashion. 

Low-aspect-ratio flat-ship theory assumes the further simplification that the ship 
is slender and fast. (The ship is taken to be fast in order to preserve the character of 
the free waves.) The resultant problem can be thought to model the flow past a three- 
dimensional planing vessel. The hierarchy of approximations is draught < beam < 
length. In this limit, the changes in the x-direction are assumed to be small 
compared to the changes in the y- and z-directions. By defining 2s = ship’s beam/ 
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ship's length and using the new variables 2 = x ,  y" = y/S and z" = z / S  with F2 = Ka/S 
and @(Z, y", Z) = q ( x ,  y, z ) / S +  . . . , q(2, g )  = ~ ( x ,  y) + . . . , (2) yield the simplified set 

$8 =fz(Z, y") on Z = 0 for (2 ,g )  on the ship, 

qE = qz(2, y") on z" = 0 for (a, y") off the ship, 

K2@? + q = 0 on Z = 0 for (2,  y") off the ship, 

I (3) 

Equations (3) still represent a mixed boundary-value problem ; however, Laplace's 
equation must be solved only in each (y",Z) cross-plane. This allows solutions to be 
generated by first solving (3) for 0 < 2 < 1 using complex-variable theory and then 
extending the solution behind the ship using Fourier-transform techniques. (For the 
rest of this paper, all reference to the low-aspect-ratio problem will be made without 
including the tildes.) 

3. Simple example 
Since 9, satisfies Laplace's equation in y and z, it can be written as the real part of 

an analytic function G of the complex variable 6 = y+iz and the parameter x for 
0 < x < 1. In order for the disturbance to decay properly at  infinity, G and its 
derivatives must tend to zero as 6 tends to infinity (for fixed x). The surface 
conditions of (3) can then be rewritten in complex form as 

K2Gxx + iG, = - lIx, (4) 

where ll is an analytic function whose real part evaluated at  z = 0, equals the 
linearized surface pressure. Thus, Re(l7) = 0 for z = 0 and (z,y) off the ship and 
Re (l7) is the linearized pressure on the ship's hull for z = 0 and (x, y) on the ship. 

Since Re (17,) = 0 for z = 0 and ( x ,  y) off the ship but is not identically zero for 
z = 0 and (x ,  y) on the ship, (4) suggests that G can be written in the following 
manner. Let G = R + il, where R and I are analytic functions which are purely real 
for z = 0 and ( x ,  y) off the ship but have branch points along the leading edge of the 
ship. R and I are also analytic inside the leading edge of the ship and both R and I 
have real and imaginary parts there. Since l7, is purely imaginary and R and I are 
purely real for z = 0 and ( x ,  y) off the ship, (4) implies R, I and 17, satisfy the coupled 
equations 

K2Rxx-I ,  = 0, (5a) 

(5b) K2ilxx + iR, = - 17,. 

This is a system of two equations in three unknown functions. One is, therefore, free 
to specify any one of these functions (as long as it has the appropriate branch points, 
analyticity and decay as 151 -+ co as described above) and solve for the other two 
functions. (The resultant system of solutions must also decay appropriately as 

The example presented in this paper was obtained for parabolic planform (y2 = x 
161 + 00.) 

for 0 < x < 1) by picking il to be the single term 
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FIGURE 2. (a) Sketch of hull for K = 1.  (b )  Sketch of centreline pressure distribution for K = 1. 

which corresponds to the flow past a flat plate at  infinite speed, and solving first for 
R from (5a) and then for flZ from (5b). The free functions of 5 found by integration 
of (5a) must be chosen such that R and R, tend to zero as lcl+ 00. This potential/ 
pressure gradient relation then defines a hull slope through the relation f x  = vz for 
z = 0 and (x,y) on the ship. The linearized pressure on the ship is found by 
integration 

w, y) = Re 17,1,-, dx+g(y), I 
where the free function g(y) is chosen such that 

P+K2rp,+f = 0 for z = 0 and (z,y) on the ship. 

In this example, g(y) was chosen so that f = 0 along the leading edge of the ship. 
This solution corresponds to a ship with hull shape 

(6 a) 
8 f = - (x -y2) - - [ 2 x-y”)a-;(x-y”)%]. 

3K2 ( 



Simple example from $at-ship theory 305 

FIGURE 3. (a )  Sketch of hull for K = 2. ( b )  Sketch of centreline pressure distribution for K = 2. 

(Note that this hull shape has the mildly undesirable property that it is dependent 
on the parameter K . )  The resultant linearized pressure on the ship is 

8 
1 + - [ "x - y2)t - $(x - y2)k] + y2 

K2 
2(x-y2)5 3K2 

P ( X ,  y )  = 

The velocity potential for 0 < x d 1 is 

cp = ~ e { i ~ ~ - ~ ~ - x ) ~ ] - -  2 5[[-(C2-x)i]3++,[5-(5"-x)~]4}. 1 ( 6 c )  3K2 2K 

A sketch of the derived hull shape and centreline pressure distribution for K = 1 
and K = 2 is given in figures 2 and 3 .  For large values of K ,  this family of hulls is 
nearly parabolic in cross-section yet becomes significantly more wavy for small K .  
The centreline draught crosses zero inside the planform for K < (&)i. Then the 
centreline draught is negative for 0 < x < x* = (yK2)s and positive for x > x*. The 
pressure on the ship's hull has a square-root singularity along the inside of the 
leading edge. In this family of solutions, the singularity is positive for all values of K .  
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The centreline pressure is a decreasing function of x and crosses zero inside the plan- 
form for K < (%)$. Then the centreline pressure is positive for 0 < x < 2 = ($K4)i 
and negative for x > 2. The pressure is non-singular everywhere away from the 
leading edge. 

The vertical velocity rpZ has a square-root singularity along the outside of the ship’s 
leading edge. The velocity and pressure singularities along the leading edge represent 
non-uniformities in the theory since the linearization assumptions break down there. 
The singularity along the outside of the ship’s leading edge can be interpreted as 
spray. 

The dynamic component of the lift is given in dimensional form by 

Dynamic lift = pU2L2e8 -K2rp,lZ,,dxdy = pU2L2e8 

on 
ship 

where p is the density of the fluid. The static component of the lift is given in 
dimensional form by 

Static lift = pU2L2e8 - f(x, y) dx dy = pU2L2e8&. 

on 
ship 

The total lift (in dimensional form) is the sum of these two and equals 

P(x, y) dx dy = (pU2L2e6) - K2 + - . Total lift = pU2L2e8 ss on (1 ps) 
ship 

As this family of hull shapes is a function of the ship speed, it is difficult to draw any 
meaningful conclusions from these results. An accurate analysis of the effectiveness 
of the hull shape on dynamic lift (and drag) requires the solution be known forfixed 
hull shape at various high speeds. Since the two-dimensional planing problem for 
arbitrary hull shape was solved numerically (see Sedov 1965), it appears likely that 
the three-dimensional planing problem for arbitrary hull shape will also require a 
numerical solution. This analysis must be approached with care. (In fact, the 
analytic method presented in this paper was derived out of desperation when the 
author was unable to get a general numerical procedure to converge.) The author, 
still having numerical difficulties, has defined an asymptotic procedure for K 9 1 and 
derived analytic solutions (using ( 5 ) )  for the first few terms in the sequence for some 
simple fixed hull shapes (i.e. fixed up to the leading-order terms in the expansion) for 
various speeds. A lift (and drag) analysis is currently underway. 

The complex variable solution, (6), valid for 0 < x < 1, can be extended to points 
downstream using Fourier transforms since the pressure is known. Thus, the 
potential solution for all x can now be given by 

-m on 
 above^ ship 
real axis 

The complex-variable representation for agrees with the Fourier- transform 
representation for 0 < x < 1.  
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Some general statements can be made using this Fourier-transform representation 
of the solution. As can be expected from a high-speed theory, no disturbance exists 
upstream of the ship. A relatively simple expression for the far-field waves and wake 
can be computed asymptotically and an energy-balance relation can be derived. 
These are presented next. 

4. Far-field waves and wake 
The far-field solution can be evaluated asymptotically along rays for x and y 

tending to infinity from (7) using the method of stationary phase: 

on 
ship 

This solution shows two families of waves whose amplitude decays like the square 
root of the distance to the ship and whose phase is constant along parabolas when 
x2/4K21y( is constant (see figure 4). The wave crests of these families are out of phase 
by 90". 

As this theory maintains the integrity of the ship's beam, it is possible to describe 
the flow in the wake region asymptotically for fixed y as x tends to 00. In  this 
example, the dominant contribution comes from the singular term in the pressure 
distribution : 

and 

It can be shown that the asymptotic form for ps, ply and plz is equivalent to the 
leading-order term found by differentiation of these formulas. Since 7 = -K2pl, in 
this region, 7 - 0 ( 1 / x )  as x tends to 00. However, the vortical flow components, pla/ 
and plz, remain of order one (in a vanishingly small region near the free surface) for 
all x extending to infinity. The lines y = -+_ 1 represent caustics in this theory and 
must be worked out more carefully. 
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FIGURE 4. Wave crests of far-field waves. 

5. Wave drag 

along the ship. I n  this example, the wave drag is given in dimensional form by 
The wave drag can be computed by integrating the pressure against the slope 

Wave drag = pU2L2s2S - P q ~ ~ l ~ - ~  dx dy ss on 

ship 

A relation between the (dimensionless) wave drag, spray drag and energy carried 
away by the vortical flow and far-field waves can be derived as follows. Consider a 
control volume whose surface extends along z = 0 from x = 0 to x = X (X+ 00)  and 
from y = - Y to y = + Y ( Y  + co) except in a small region about the leading edge of 
the ship where the surface follows a semicircular arc C, (centred at the edge of the 
ship and parallel to the z-axis) as in figure 5.  The bottom of the volume is located at  
z = -2 (2 + 00)  and the sides are vertical. Since q satisfies Laplace's equation in each 
cross-plane, 

1 

V,q~ .n  is the normal derivative of cp on C,. The first term in (8) is defined to be the 
spray drag in the limit as c: tends to zero and is equivalent to the momentum carried 
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away by the flow near the leading edge of the ship. The second term does not 
contribute in the limit as Y tends to infinity. The third term can be expanded in the 
limit as Z +  co as 

- K 2 ~ ~ ~ x ~ z l z - o d x d y  = (-Wave Drag)+ Jq x=x dY. 

The integral of k2 can be thought of as the energy carried away by the free-surface 
waves. The last term in (7)  can be written as 

This integral can be interpreted as the energy carried away by the vortical flow. 
Thus, (8) defines 

Wave Drag = Spray Drag + Energy in Waves i Energy in Vortical Flow. 

It can be shown that for pressure distributions whose Fourier coefficients decay 
sufficiently fast, the energy in the free surface waves is asymptotically equivalent 
to the energy in the vortical flow as follows. Consider a surface located at x = X 
(X+co)for - c o < y < c o a n d  -co<z<'O.Then, 

0 = Jp~'uv~'zz 
implies 

2-0 

2-0 

However, 
2-0 

- [ [JP(P, y") sin (g) cos (Id) dP dij d2 1'1 
1 +-& sin (g) { 2 [ ss.(., i j )  sin (3 cos (ly") dPdij 

on 

* [ JJP(5 ,  y") COB ($) cos (Zy") dP dy" 
nn 

This term tends to zero for pressure distributions whose Fourier coefficient 

P(P,ij) exp (iPli/K) cos (Zy") dZ dy" - 0 
z+w 
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FIQURE 5 .  Control volume used to derive wave-drag relationship. 

Then, the energy in the free-surface waves is asymptotically equivalent to the energy 
in the vortical flow. 

In this example, the (dimensionless) spray drag is ;K2n and the energy in the waves 
and in the vortex flow is 

210 

6. Conclusions 
The flat-ship approximation is a physically realistic approximation for many 

ships. The theory, however, leads to a mixed boundary-value problem which requires 
considerable effort to solve. 

Some important features of the high-speed low-aspect-ratio solution are demon- 
strated by the example presented in this paper. No disturbance exists ahead of the 
ship. There is a square-root singularity in the vertical velocity along the outside of 
the ship's leading edge. (This singularity represents a non-uniformity in the theory 
and is interpreted as spray.) The pressure also has a square-root singularity along the 
leading edge of the ship. Two families of far-field waves (which are out of phase by 
90") run away from the ship along parabolic trajectories. A wake region exists behind 
the ship which has an asymptotically small free-surface elevation but which has O( 1) 
components of vertical and sideways velocities in a vanishingly small region near the 
free surface all the way out to downstream infinity. The wave drag is found to be the 
sum of the spray drag and the energy carried away by the vortieal flow and free- 
surface waves. 
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